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A rationale for implicit turbulence modelling?

Len G. Margolin∗;† and William J. Rider‡

Los Alamos National Laboratory; Los Alamos; NM 87545, U.S.A.

SUMMARY

We present a rationale for the success of nonoscillatory �nite volume (NFV) di�erence schemes in
modelling turbulent �ows without need of subgrid scale models. Our exposition focuses on certain
truncation terms that appear in the modi�ed equation of one particular NFV scheme, MPDATA. We
demonstrate that these truncation terms have physical justi�cation, representing the modi�cations to the
governing equations that arise when one considers the motion of �nite volumes of �uid over �nite
intervals of time. Published in 2002 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, a class of �nite di�erence methods has exhibited the remarkable property of produc-
ing large eddy simulations (LES) of turbulent �ow without recourse to any explicit subgrid
scale model [1–3]. These, the nonoscillatory �nite volume (NFV) schemes, so far are the only
class of schemes to demonstrate this property, which we term implicit turbulence modelling.
The goal of this paper is to provide a rationale for the implicit turbulence modelling ability

of the NFV schemes. It is clear that the e�ects of the unresolved scales of motion are modelled
by the propitious form of the truncation error of the numerical approximations. Our approach
here will be to analyse the numerical scheme through its modi�ed equation—the PDE that
the algorithm more closely approximates including the most important truncation terms. We
will perform this analysis in the context of Burgers’ equation in one dimension. It will be
clear that the issues lie in the treatment of the advective terms, and that the derivation can
be readily extended to more dimensions, and to other equations.
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822 L. G. MARGOLIN AND W. J. RIDER

We will begin our investigation in Section 2 by analysing the speci�c NFV scheme MP-
DATA [4; 5] applied to Burgers’ equation. We will construct its modi�ed equation, keeping
terms up to the third order in space and time. MPDATA in particular is second-order accu-
rate, meaning that its largest truncation error is of third order. We will focus on a particular
third-order truncation term, the product of a �rst-order and a second-order spatial derivative—
uxuxx. We refer to this as the nonlinearly dispersive term. Qualitatively, terms with similar
form appear in other physical theories. For example, terms of this general form are derived
to regularize momentum transfer in shocked �ows [6]. Perhaps of more relevance, terms of
this form also appear in several turbulence models [7–9], and in particular in a newly pro-
posed large-eddy theory known as �-models [10; 11]. We will brie�y review these theories
and models in Section 3.
Such associations are suggestive, but hardly su�cient to serve as a compelling rationale

for using NFV schemes for implicit turbulence modelling. Indeed, one might suspect that
a more fundamental principle underlies all of these theories and could provide a unifying
perspective. One common feature of many (if not all) of these theories is that they apply
to �nite volumes of the �uid. This recognition has led us to consider the di�erence between
the governing equations of an in�nitesimal point of �uid and a �nite volume of �uid. The
equations governing a �nite volume of �uid are derived from the point equations, but are
di�erent due to the nonlinearity of the advective terms in the latter—a fact that has been
long appreciated by theorists and modellers studying turbulence. What is unexpected is that
a straightforward and justi�able derivation of the �nite volume equations leads directly to
nonlinearly dispersive terms.
Details and discussion of this derivation will be given in Section 4. Here we preview the

main conclusion of this paper. If the modi�ed equation of the numerical scheme is compared
to the point equations, one would identify the nonlinearly dispersive terms as truncation error.
However, since we are approximating the evolution of a �nite volume (i.e., a computational
cell), it is more appropriate to compare the modi�ed equation to the (analytic) �nite volume
equations derived in Section 4; then we realize that these terms are not numerical error,
but legitimately describe the physics. We conclude that the success of NFV schemes is a
re�ection of their more accurate approximation of the governing equations for the motion
of a �nite volume of �uid and the associated entropy production.
We have been careful to emphasize the qualitative nature of the appearance of the non-

linearly dispersive terms. There is no a priori reason to believe that the dimensionless coef-
�cients of these terms in the numerical algorithm are ‘correct’—perhaps optimal is a better
word. Departing here from our analytic approach, we have constructed a model for simulating
Burgers’ equation using fourth-order accurate Runge–Kutta methods. To this algorithm, we
can explicitly add various third-order terms, separately or in combination, and with arbitrary
coe�cients.
Our main application of this model will be to validate the use of the modi�ed equation as

a continuous proxy of the numerical algorithm. As the modi�ed equation is based on Taylor
series expansion, one might be concerned that the series is not convergent at the shortest
resolved wavelengths and so not relevant. In Section 6, we will use our high-order Burgers’
model to explicitly address this concern. In particular, we will compare a simulation using
MPDATA to an equivalent simulation of its modi�ed equation; the correspondence of the
two calculations lends credence to our approach. We will also use our model to evaluate the
importance of the truncation error terms that do not have a physical analogue.
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IMPLICIT TURBULENCE MODELLING 823

2. MPDATA

Our goal in this section is to provide a brief introduction to the NFV scheme MPDATA,
and to the derivation of its modi�ed equation. MPDATA (Multidimensional Positive De�nite
Advection Transport Algorithm) is a particular example of an NFV scheme. We emphasize
that implicit turbulence modelling is not a unique property of MPDATA, but is shared by
many (if not all) NFV schemes. We have chosen to use MPDATA as our paradigm partly
because it is amenable to analysis and partly because of our own familiarity with this scheme.
A complete review of MPDATA including its properties and its many options can be found
in Reference [4].
By nonoscillatory, we identify properties such as sign preservation or monotonicity preser-

vation. These properties have great practical importance in numerical simulations, since they
are closely connected [12] to the second law of thermodynamics. In particular, nonoscillatory
schemes, with suitable restrictions on the computational time step, are nonlinearly stable. In
general, these methods have adaptive �nite di�erence stencils and are nonlinear even for linear
equations. By �nite volume, we single out those schemes written in �ux form, as opposed to
advective form. Flux form schemes estimate the advective terms as the sum of �uxes entering
and leaving a volume (i.e., computational cell), rather than estimating these terms at a single
point. Because of detailed balance—that the �ux into a cell is exactly the negative of the �ux
leaving its neighbour—�ux form schemes are conservative to the level of numerical roundo�
error.
Although most NFV scheme are based on the idea of �ux limiting, MPDATA is formu-

lated more directly on the iterated properties of upstream di�erencing. In its most basic form,
MPDATA is sign preserving (but not monotonicity preserving), and second-order accurate.
MPDATA is a two-time level algorithm. It is a multidimensional scheme, and its implemen-
tation does not involve spatial splitting.
A basic tool in developing MPDATA is Taylor series analysis, leading to the concept

of the modi�ed equation. Here we describe the derivation of the basic MPDATA algorithm
to simulate the simple case of one-dimensional advection of a scalar  (x; t) by a constant
velocity �eld a.

 t =−a x (1)

The �rst step is a upwind donor cell scheme; the scheme depends on the sign of the velocity

 n+1
j =  n

j − (fj+ 1
2
− fj− 1

2
) (2)

where the �ux is:

fj+ 1
2
=

A
2
( n

j +  n
j+1)−

|A|
2
( n

j+1 −  n
j ) (3)

In common notation, the subscript j identi�es the computational cell, the superscript n the
time, and A=[(a�t)=(�x)] is the Courant number. Here �x is the cell width, and �t is the time
step. Note that the �ux (i.e., the spatial derivative) has been estimated one-half cell upstream,
where the upstream direction is determined by the sign of a.
Equations (2) and (3) are stable and sign preserving when the Courant number is bounded:

A∈[−1; 1]. However these schemes are only �rst-order accurate. That is, expanding the
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discrete �eld  n
j in a Taylor series as if it were a continuous function, we �nd that

Equations (2) and (3) more accurately approximate the advection-di�usion equation

 t =−a x + @x(K x) (4)

where the di�usion coe�cient K =[(�x2)=(2�t)](|A| − A2). Under the assumed bounds on the
Courant number, the di�usion coe�cient K is positive thus insuring stability. We say the
scheme is �rst-order accurate, meaning that the error is of order O(�x2) relative to  itself.
We refer to Equation (4) as the modi�ed equation of Equations (2) and (3).
To derive a more accurate algorithm, one can compensate the second-order (i.e., di�usional)

error, by estimating the error and subtracting it in the algorithm. The essence of MPDATA is
how we estimate that error; to preserve the nonoscillatory properties of the solution, we use
an upstream estimate of the error. We write the error term in advective form

@x(K@x ) � @x(a(1) ) (5)

where

a(1)≡ �x2

2�t
(|A| − A2)

1
 
@x (6)

is called a pseudo velocity. To complete the basic MPDATA algorithm, we now do a second
step, repeating Equation (2) using the pseudo velocity in Equation (3). Note that if  j is
de�ned at the centres of computational cells, then the pseudo velocity is de�ned at the cell
edges halfway between the cell centres, and varies in space and time even though a is constant.
It is easy to show that the bounds on the physical Courant number imply the same bounds
on the pseudo velocity. Each step of the algorithm is stable and sign-preserving and therefore
the overall scheme also has these properties. The error terms in the modi�ed equation of
basic MPDATA (not shown) now appear at the third order, implying that MPDATA is a
second-order algorithm.
The extension of the MPDATA algorithm to Burgers’ equation

ut =−uux + �uxx (7)

where u is the �uid velocity and � is the viscous di�usivity, is straightforward; details of
this extension are discussed in Reference [4]. The derivation of its modi�ed equation is most
easily done using computer manipulation tools; we present the modi�ed equation here without
derivation. To facilitate comparison with our analytic results, we denote the solution of the
MPDATA algorithm by �u as the cell-averaged velocity.

�ut =− �u �ux + � �uxx + �
(
�uxxtt(�t)2

8
+
�uxxxx(�x)2

12

)
+
( |U |
4

− 1
6

)
�u �uxxx(�x)2

+
(1− |U |)(�x)2

4
(| �ux| �uxx − �ux �uxx)− �t�x

4
(sgn(U )| �ux|( �ux)2 −U ( �ux)3) + · · · (8)

Here U ≡ �u�t
�x and sgn(U )≡ |U |

U . We note that some of the dimensionless coe�cients may
change depending on the details of the implementation of MPDATA. We have assumed that
the di�usive term is centered in time—see Section 3.3 in Reference [4].
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The MPDATA algorithm for Burgers’ equation depends on both the sign of �u and the sign
of �ux. Equation (8) uni�es the four combinations that can occur generally in a single formula.
We add that this equation also describes the situation when the advective velocity changes
sign across the cell. However, it is not valid for those cells where the gradient of the velocity
changes sign across the cell. In these cells, which represent local minima or maxima of the
velocity �eld, MPDATA becomes only �rst-order accurate.

3. PHYSICAL THEORIES AND COMPUTATIONAL MODELS

The goal of this section is to point out the resemblance of our results to previous work, both
theoretical and computational. First we will brie�y review a variety of results. Then we will
discuss in more detail a recently proposed set of equations for turbulent �ows, generically
named the Navier–Stokes alpha model (�-model). We will see that the theoretical and compu-
tational models are very similar in form, but with one essential di�erence: The computational
models are strictly dissipative while the theoretical models are not. In the end, the di�erence
is whether the model is locally as well as globally dissipative. Our results follow this pattern
as well, and we will o�er some discussion in Section 5. With regard to the �-model, we will
show that the equations are very similar to our analytic results in Section 4; however the
derivation, the assumptions and even the interpretation of the equations are very di�erent.

3.1. Survey of theories and models

Let us begin by noting that the presence of the nonlinear term −uxuxx in the right-hand-side
of the momentum equation leads to (ux)3 in the associated energy equation (see Section 5).
This term is dissipative in compression, but not in expansion. On the other hand, the nonlinear
term |ux|uxx leads to −|(ux)3|, which is always dissipative.
On the theoretical side, Bethe [13] showed that the rate of entropy production across a

shock is

T
@S
@t
=− G

12cs
(�u)3 (9)

where S is the entropy, T is the temperature, cs is the sound speed and G is the fundamental
thermodynamic derivative @2p

@V 2 . Note that this expression increases entropy in compression, but
decreases in expansion.
In hydrodynamic turbulence, Kolmogorov [14] has derived a remarkably similar form

−@K
@t

L=
@S
@t

L= − 5
4
(�u)3 (10)

where K is the kinetic energy, and the bar indicates spatial averaging over the length L.
Frisch [15] has derived a similar formula for the regularization of shocks in a Burgers �uid

@K
@t

L=
1
12
(�u)3 (11)

As in Bethe’s formula, the entropy is increased in compression in each of these formulas, but
decreases in expansion.
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826 L. G. MARGOLIN AND W. J. RIDER

In the �eld of computational �uid dynamics, it has been known for more than 50 years
that direct simulation of the compressible Navier–Stokes equations for high speed �ows with
shocks leads to unphysical oscillations. In a seminal paper, Von Neumann and Richtmyer
[6] attributed these oscillations to the lack of su�cient entropy production in the shock,
and suggested adding an arti�cial viscosity to augment the pressure in the momentum and
energy equations. The arti�cial viscosity, which is added to the physical pressure, has the
one-dimensional form:

q=−c�x2ux|ux| (12)

where �x is the computational cell size and c is a dimensionless constant of order unity.
Note that it is the gradient of q that enters the momentum equation. The absolute value
sign guarantees energy dissipation and entropy production. In modern shock wave codes, the
viscosity usually is turned o� in expansion altogether.
For numerical applications to turbulent �ows, Smagorinsky [7] proposed a multidimensional

subgrid model for the Reynolds stress:

�ij= − �TSij (13)

where Sij ≡ 1
2 (

@ui
@xj
+ @uj

@xi
) and the turbulent viscosity �T ≡ (c�x2SijSij)

1
2 . Here again, c is

a dimensionless constant. The similarity between Equations (12) and (13) is not accidental—
see References [16; 17]. Note again that the Smagorinsky model is absolutely dissipative.
Leonard [8] has proposed an expansion for the advective terms, based on the Gaussian

�lter. The Leonard expansion is:

ûux � ûûx + (�)2ûxûxx +
(�)4

2!
ûxxûxxx + · · · (14)

Here the top hat indicates spatial �ltering over the length scale �. Unlike the previous com-
putational models, this model is not absolutely dissipative. More recently, Winkelmans et al.
[9] have discussed the Leonard model, noting that it provides signi�cant backscatter, but not
su�cient dissipation. They suggest augmenting the model with a (dynamic) Smargorinsky
term to increase the dissipation of energy.

3.2. Burgers �-model

The �-models were introduced to describe the mean motion of ideal incompressible �uids (cf.
References [10; 11] and the references therein). They are derived in an elegant Euler–Poincar�e
formalism, which is the Lagrangian version of the Lie–Poisson Hamiltonian framework. In
the derivation one does a Reynolds decomposition of the motion of a �uid parcel along a
Lagrangian trajectory. When the formalism is applied to one-dimensional Burgers equation,
one derives

vt =−@x

(
�uv− 1

2
( �u)2 − �2

2
( �ux)2

)
+ �vxx

(15)
v≡ �u− �2 �uxx

Here the length scale � is introduced into the theory as a closure assumption concerning
the correlation of �uctuating displacements, and so represents a property of the �ow. Both
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�u and v are velocities. In applications to LES turbulence modelling v is the un�ltered (or
de�ltered) velocity while �u is the �ltered velocity. Here we identify �u with the mean Eulerian
velocity. Eliminating v from Equation (15), and then di�erentiating the resulting equation to
approximate and eliminate the cross-derivative �uxxt , we derive

ut =− �u �ux − �2 �ux �uxx + �( �uxx − �2 �uxxxx) (16)

This result should be compared with our own analytic result (24) in Section 4. The latter has
additional terms resulting from the averaging in time and proportional to the time scale T .
These same terms are missing in the Leonard model. Like the other analytic results reviewed
here, the �-model is not absolutely dissipative. Thus one might suspect the need to add extra
dissipation when employing the �-model for LES.

4. FINITE VOLUME EQUATIONS

In this section we derive our principal result, the equations that describe the evolution of �nite
volumes of Burgers �uid. First we will consider smooth (i.e., laminar) �ows. Using Taylor
series expansion, we will integrate Burgers’ equation over a �nite interval in space and time,
leading to analytic equations very similar in form to the modi�ed equations of MPDATA
(8). We note that this procedure and result do not apply to turbulent �ows without additional
assumptions and derivation. We will then describe a physically reasonable assumption and
analysis that justi�es using the same volume-averaged equations for turbulent �ows as for
laminar �ows.
In either case, we emphasize that the choice of the size of the intervals is arbitrary and in

particular is not restricted by the details of the �ow. In the next section, we will identify the
length scale with the size of a computational cell, and the time scale with the computational
timestep.

4.1. Laminar �ows

We again consider a one-dimensional �uid governed at each in�nitesimal point by Burgers’
equation. First we will assume that the �ow is smooth on the length scale L and time scale
T—i.e., that all �ow features are resolved on these scales. We will de�ne such a �ow as
being laminar on the scales L and T . Because of the assumed smoothness, we can expand
the velocity u in a local Taylor series in space and time:

u(x + x′; t + t′)= u(x; t) + uxx′ + utt′ + uxx
(x′)2

2
+ uxtx′t′ + utt

(t′)2

2
+ · · · (17)

Then we can de�ne an averaged (in space and time) velocity

�u(x; t)≡ 1
LT

∫ L
2

− L
2

∫ T
2

− T
2

u(x + x′; t + t′) dx′ dt′

= u(x; t) +
1
6
uxx

(
L
2

)2
+
1
6
utt

(
T
2

)2
+ · · · (18)
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828 L. G. MARGOLIN AND W. J. RIDER

since the odd terms integrate to zero over the symmetric interval. Now �u(x; t) is a continuous
function, and so its derivatives can be de�ned. For example,

�ux= ux +
1
6
uxxx

(
L
2

)2
+
1
6
uxtt

(
T
2

)2
+ · · · (19)

Note that in general, �ux �= ux.
Our goal is to derive the equations that govern the evolution of �u. The �rst step is to

average Burgers’ equation (7) term by term. The linear terms are easily treated. For example,

ut = ut +
1
6
uxxt

(
L
2

)2
+
1
6
uttt

(
T
2

)2
+ · · · (20)

and

�uxx= �

(
uxx +

1
3
uxxxx

(
L
2

)2
+
1
3
uxxtt

(
T
2

)2
+ · · ·

)
(21)

A direct evaluation of the nonlinear (advective) term yields:

uux= uux +
1
6

(
L
2

)2
(3uxuxx + uuxxx) +

1
6

(
T
2

)2
(2utuxt + uuxtt + uxutt) + · · · (22)

where we have shown all terms of O(L2; T 2) or lower.
At this point, the averaged equation is still written in terms of the point velocities. The

second step then is to invert the set of forward relations of which Equations (18) and (19)
are two examples. When the point velocity u is smooth enough, we can invert the Taylor
series, to write:

u(x; t) ≈ �u(x; t)− 1
6
�uxx

(
L
2

)2
− 1
6
�utt

(
T
2

)2
+ · · · (23)

Higher-order terms can be easily found by di�erentiating this expression.
Now we substitute the inverse relations into the averaged Burgers’ equation terms of

Equations (20), (21) and (22) to derive [to O(L2; T 2)]

�ut =− �u �ux − 1
3
�ux �uxx

(
L
2

)2
− 1
3
�ut �uxt

(
T
2

)2
+ �

[
�uxx +

1
6
�uxxxx

(
L
2

)2
+
1
6
�uxxtt

(
T
2

)2]
(24)

which is the evolution equation for �u.
Finally, it is convenient to rewrite �ut �uxt in terms of spatial derivatives, by using

Equation (24). Neglecting terms of O(�2), we �nd

�ut =− �u �ux − 1
3
�ux �uxx

(
L
2

)2
− 1
3
( �u �u3x + �u

2 �ux �uxx)
(
T
2

)2
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+ � �uxx +
�
6
(( �ux)2 �uxx + �u( �uxx)2 + �u �ux �uxxx)

(
T
2

)2

+ �

[
1
6
�uxxxx

(
L
2

)2
+
1
6
�uxxtt

(
T
2

)2]
(25)

4.2. Turbulent �ows

Let us now consider �ows that are not smooth on the scales L′ and T ′, meaning that the
Taylor series (17) does not converge su�ciently rapidly. We will refer to such �ows are
being turbulent on the scales L′ and T ′. The derivation of Equation (24) cannot be justi�ed
for such turbulent �ows without further assumptions; i.e., if the Taylor series expansion is
inaccurate, then both the forward transformation (17) and also the inverse relation (23) are
questionable, or may require keeping many higher-order terms. In the previous derivation,
the connection between the average velocity �u and the point velocity u was critical, since
it is only the latter for which we know the governing equation. However, the result of this
derivation was an equation for �u. Furthermore, since �u is averaged in length and time, we
expect that it is smoother than u. This suggests an new strategy, in which we consider a
hierarchy of velocity �elds, and attempt to bootstrap our results.
Let us de�ne the velocity �elds averaged over the arbitrary scales L′ and T ′ by:

�u(x; t; L′; T ′)≡
∫ L′

2

− L′
2

∫ T′
2

− T′
2

u(x + x′; t + t′) dx′ dt′ (26)

For brevity, we suppress the coordinate dependence, implying all functions are evaluated at
(x; t) except where explicitly noted otherwise. Let us now make two assumptions: the averaged
velocity �u(L′; T ′) is smooth on its own scales (L′; T ′), and there is some set of scales (L; T )
below which the point velocity u(x; t) is smooth.
The �rst assumption is meant to imply that we can expand �u(L′; T ′) in a Taylor series

in a region somewhat bigger than (L′; T ′). From a computational point of view, we mean
that the �ow can be modelled in a numerical simulation where �u(L′; T ′) is a cell-averaged
quantity whose evolution can be described by a partial di�erential equation. This interpretation
also indicates quantitatively how convergent the Taylor series need be—the remainder of the
Taylor series should be of the same order or less than the truncation error of the numerical
algorithm.
From the second assumption, we infer there is some set of scales (L; T ) for which

the point velocity u(x; t) has a su�ciently convergent Taylor series. These are the
scales for which simulations are DNS. The results (24) of the previous section then apply, so
that

�ut(L; T ) =− �u(L; T ) �ux(L; T )− 1
3
�ux(L; T ) �uxx(L; T )

(
L
2

)2

−1
6
�ut(L; T ) �uxt(L; T )

(
T
2

)2
+ � �uxx(L; T ) (27)
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Now let us consider the averaged velocity at twice the scales—(2L; 2L).

�u(2L; 2T )≡ 1
4LT

[∫ 0

−L

∫ 0

−T
u(x + x′; t + t′) dx′ dt′ +

∫ L

0

∫ 0

−T
u(x + x′; t + t′) dx′ dt′

+
∫ 0

−L

∫ T

0
u(x + x′; t + t′) dx′ dt′ +

∫ L

0

∫ T

0
u(x + x′; t + t′) dx′ dt′

]
(28)

or

�u(x; t; 2L; 2T )≈ 1
4

[
�u
(
x − L

2
; t − T

2
; L; T

)
+ �u
(
x +

L
2
; t − T

2
; L; T

)

+ �u
(
x − L

2
; t +

T
2
; L; T

)
+ �u
(
x +

L
2
; t +

T
2
; L; T

)]
(29)

Using our �rst assumption, we expand �u(x; t; 2L; 2T ) in a Taylor series to write (for example):

�u
(
x +

L
2
; t +

T
2
; L; T

)
≈ �u(x; t; L; T ) +

(
L
2

)
�ux(L; T ) +

(
T
2

)
�ut(L; T )

+
(
LT
4

)
�uxt(L; T ) +

1
2

(
L
2

)2
�uxx(L; T ) + · · · (30)

and similarly for the other three terms of Equation (28). Combining Equations (29) and (30)
leads to:

�u(2L; 2T ) ≈ �u(L; T ) +
1
2

(
L
2

)2
�uxx(L; T ) +

1
2

(
T
2

)2
�utt(L; T ) + · · · (31)

This is the analogue of Equation (18) in the previous section. However we have expressed
�u(2L; 2T ) in terms of �u(L; T ), and so avoided the issues concerning the smoothness of u(x; t)
on the scales (2L; 2T ).
Next, we construct the approximate inverse relation:

�u(L; T ) ≈ �u(2L; 2T )− 1
2

(
L
2

)2
�uxx(2L; 2T )− 1

2

(
T
2

)2
�utt(2L; 2T ) + · · · (32)

Higher-order terms again can be found by di�erentiating this equation.
Now we have set up the transformations between �u(L; T ) and �u(2L; 2T ) and so our pro-

cedure will be to average Burgers’ equation (7) over the twice-wide intervals [−L; L] and
[−T; T ], writing the results in terms of �u(L; T ) and its derivatives. Then we will use the
inverse relations to express the results in terms of �u(2L; 2T ) and its derivatives. Assembling
the terms then yields the Burgers’ equation at the scales [2L; 2T ].
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There is one subtlety in the process, which is to write each twice-wide integral as the sum
of four integrals as was done in Equation (28). Each of these four integrals can now be
written as a function of �u(x± L

2 ; t± T
2 ; L; T ). Thus, we must expand each of these terms about

(x; t). We show the result of this process for the nonlinear term:

uux(2L; 2T )≈ �u(L; T ) �ux(L; T )

+
1
6

(
L
2

)2
[3 �ux(L; T ) �uxx(L; T ) + �u(L; T ) �uxxx(L; T )]

+
1
6

(
T
2

)2
[2 �ut(L; T ) �uxt(L; T ) + �u(L; T ) �uxtt(L; T ) + �ux(L; T ) �utt(L; T )]

(33)

Finally, substituting the inverse relations (32), we derive the following result:

�ut(2L; 2T ) =− �u(2L; 2T ) �ux(2L; 2T ) + � �uxx(2L; 2T )− L2

3
�ux(2L; 2T ) �uxx(2L; 2T )

−T 2

6
�ut(2L; 2T ) �uxt(2L; 2T ) + �

[
L2

6
�uxxxx(2L; 2T ) +

T 2

6
�uxxtt(2L; 2T )

]
(34)

Note that Equation (34) is exactly the same as Equation (27), written for its own scales. Said
in a di�erent way, Equation (34) is exactly the equation we would have gotten by integrating
of the point velocities u(x; t), if we had not been concerned about the convergence rates
of the Taylor series and the inverse approximation. It is clear now that we can repeat this
process, integrating Burgers equation over the scales [4L; 4T ], etc. and relating the averaged
terms to �u(2L; 2T ) and its derivatives. We conclude that the fundamental equation (24) or
equivalently (25) holds at all scales.
In considering Equation (24) or (25), one should remember that underlying every re-

alization of the averaged �ow �u(x; t), there are many possible �ow �elds u(x; t). Some
of these are smooth, some are not smooth; yet all evolve identically. This leads to two
conclusions:

• the description of the �ow in terms of �u(x; t; L; T ) depends on the scales with which it
is observed. That is, L and T are scales of the observer, not of the �ow,

• the unresolved scales do not play a signi�cant role in the evolution of �u(x; t; L; T ).
The �rst conclusion distinguishes our theory from the �-model, where the length scale

� is assumed to derive from the properties of the �ow. In our derivation, all length and
time scales must derive from the equations themselves. We have neglected such possibil-
ities in our statement of the problem, where the only physical length scale is associated
with the viscosity and so is too small to play a role in the LES simulations. More gener-
ally, physical scales may arise from the initial or boundary conditions, from the forcings,
or additional coupled physical processes. Each of these would require extensions to our
theory.

Published in 2002 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:821–841



832 L. G. MARGOLIN AND W. J. RIDER

5. COMPARISON OF THEORY AND ALGORITHMS

The close similarity of the analytic equations (25) that govern the motion of a �nite volume of
‘Burgers’ �uid and the modi�ed equations of MPDATA (8) provides a convincing rationale
for the success of NFV schemes in simulating unresolved turbulent �uid �ow. The new
terms that represent the e�ects of considering �nite volumes of �uid, derived in the previous
section, correspond to terms in the modi�ed equation, which arise from the �nite volume
approximations in the algorithm. This analogy underscores the importance of using a second-
order accurate algorithm; a lower-order numerical truncation error would dominate those new
‘physical’ terms.
A close comparison of these two equations also shows a few di�erences, in the values

of some of the dimensionless coe�cients, the appearance of a purely dispersive term �uxxx,
and also in the signi�cant appearance of an absolute value sign in the modi�ed equation.
As to the values of the dimensionless coe�cients and the dispersion, it appears that the
important questions concern the sensitivity of the simulation rather than accuracy. We will
defer addressing these questions to the next section. In this section, we will discuss the issues
associated with the absolute value sign.
We begin by comparing the �nite volume energy equations, which are derived by multi-

plying the momentum equation by the average velocity �u, and integrating by parts. For the
analytic equation (25), we derive

1
2
( �u2)t =−@x

(
�u

[
�u2

3
+
�u2x(1 +U 2=2)

6

(
L
2

)2])
+
�u3x(1 +U 2=2)

6

(
L
2

)2
+ O(�) (35)

where the dimensionless quantity U ≡ [( �uL)=(T )]. Our notation does not imply that we believe
the viscous terms O(�) are necessarily small, but that we are only concerned with the inviscid
dissipation here. Note that the term on the right-hand-side inside the derivative represents
advection and does not change the global balance of energy. However the term proportional
to (ux)3 does alter the global energy. Furthermore, this term may be positive or negative;
in particular, in regions of expansion the large scales of motion can absorb energy from
the smaller (unresolved) scales of motion. From a physical point of view, this is correct.
The inverse cascade, sometimes termed stochastic backscatter, is a well understood process
in turbulence and plays an important role in determining the variability of the �ow. From a
numerical point of view, however, the term −uxuxx in the momentum equation would appear
to be a negative di�usion in regions of expansion potentially leading to numerical instability.
Now let us consider the �nite volume energy equation derived from the MPDATA modi�ed

equation (8). There are two cases to consider, when �ux¿0 (expansion) and when �ux¡0
(compression). First, in expansion:

1
2
( �u2)t =−@x

(
�u

[
�u2

3

])
+
( |U |
4

− 1
6

)
�u2 �uxxx(�x)2

−| �ux|3(|U | −U 2)
4

(�x)2 + O(�) (36)

Published in 2002 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:821–841



IMPLICIT TURBULENCE MODELLING 833

while in compression we get added terms:

1
2
( �u2)t =−@x

(
�u

[
�u2

3
+
�u2x(1− |U |)

4
(�x)2

])
+
( |U |
4

− 1
6

)
�u2 �uxxx(�x)2

− |ux|3(1− |U |)2
4

(�x)2 + O(�) (37)

The modi�ed equations of MPDATA (and other NFV schemes) have a coe�cient of zero
for the �ux �uxx term in regions of expansion in contrast with the analytic equation. One may
expect that the inverse cascade of energy is the result of small scale instabilities that grow and
�nally saturate. Mathematically, these instabilities will be controlled by higher-order deriva-
tives. We have performed numerical simulations of Burgers turbulence in which we turn
o� the nonoscillatory approximations in MDPATA in regions of expansion; the results have
numerical oscillations, but are stable. Of course, when the full MPDATA is used, these os-
cillations are suppressed, possibly along with some of the physical variability as well. We
believe that an optimal answer would lie between these two results.
Note that NFV schemes are not constructed with the purpose of zeroing the term −uxuxx in

expansion; rather this is a result of the upstream di�erencing. There is a strong connection [12]
between the nonoscillatory property of NFV schemes and the second law of thermodynamics,
which states that entropy must not decrease in a closed system. Consider now the �nite volume
energy equation associated with MPDATA and recall that in a Burgers �uid, the entropy is
− �u2. Thus another interpretation of the MPDATA energy equation is that entropy increases
locally in each cell. However, an individual computational cell is not a closed system. Thus
the MPDATA energy=entropy equation is a su�cient, but not necessary condition to enforce
the second law. One might suppose that relaxing this local constraint, while enforcing the
second law in a more global fashion, might achieve the more optimal result suggested in the
previous paragraph.
How might one relax the nonoscillatory property? One strategy (at least conceptually) would

be to enforce the second law on pairs of cells rather than on each cell individually. Clearly
this would require expanding the stencil of the algorithm, and presumably altering the form of
both the third-order and higher-order truncation terms. This approach is probably not practical,
but suggests an alternative—to design an algorithm whose higher-order truncation terms also
have some desired form. The construction of an algorithm from a desired form of a modi�ed
equation, a kind of reverse engineering, is one topic of our current research.

6. NUMERICAL EXPERIMENTS

In this section, we justify the use of the modi�ed equation as a tool to understand the prop-
erties of MPDATA, and to investigate the sensitivity of the simulations to the dimensionless
coe�cients of the truncation error terms. We also compare several approaches to LES simu-
lations of Burgers’ equation.
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Figure 1. The initial condition for the multimode random sine wave for both
the MPDATA and the DNS simulations.

6.1. Comparisons of MPDATA and its modi�ed equation

Here we verify our hypothesis that the properties of MPDATA may be understood in terms of
its modi�ed equation. We will conduct numerical experiments where we solve and compare
Burgers’ equation using two methods: the MPDATA algorithm described in Section 2, and
by direct numerical simulation of the MPDATA modi�ed equation (8). For convenience we
write a general equation in the form:

�ut =− �u �ux + � �uxx + (� �ux �uxx + �| �ux| �uxx + � �u �uxxx)(�x)2

+ � �uxxxx(�x)3 + (	 �u3x= �u)(�x)
2 (38)

This form will allow us to test the sensitivity of the modi�ed equation and, once the cor-
respondence is established, of MPDATA, to changes in the various coe�cients. For basic
MPDATA, we choose �=− 1

4 , �=
1
4 , �= − 1

6 and 	=0. We also use a coe�cient �=− 1
6

to represent the higher-order dissipation. Note that we have ignored the Courant number (U )
dependence in the coe�cients.
We use a direct numerical simulation of the modi�ed equation (DNS-ME) to accurately

compute all the truncation terms. The DNS-ME program uses fourth-order centred di�erences
and is integrated in time using the classic fourth-order Runge–Kutta method. In this case,
DNS does not imply we are resolving the viscous length scales of the problem, but rather
that we are simulating the modi�ed equation of MPDATA accurately for a given choice of
computational cell size and time step. Indeed, in these problems the DNS-ME method is
unstable when only the basic Burgers’ equation is simulated (i.e., �=�= �= �= 	=0). Our
test problem is a multimode sine wave, with initial condition

u(x)=
20∑

m=1
a sin(2m
(x − b)) (39)

where a and b are random variables. The multimode initial condition is shown in Figure 1.
Note that this problem contains many regions of both compression and expansion.
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Figure 2. Comparing the �nal solutions for the multimode random sine wave using MPDATA and the
DNS-ME for high viscosity �=0:001. The right �gure compares the time histories of the ratio of the
viscous and the total energy dissipation rates from MPDATA and the DNS-ME for high viscosity.

The MPDATA simulations use 400 cells over the interval [0; 1], and a small time step,
corresponding to a Courant number of 0.05, to minimize the e�ect of ignoring the Courant
number dependence in the DNS-ME equations. We have run the DNS-ME model with in-
creasing numbers of cells to insure numerical convergence. We consider two cases, one with
the physical viscosity �=0:001 to represent large viscosity, and the other with �=0:00001
to represent low viscosity. By high (low), we mean that the term � �uxx is comparable in size
to (is much less than) �u �ux, based on scale analysis.
We will use three bases of comparison between the MPDATA and the DNS-ME runs.

First, we will plot the �nal solutions together for each case (at time t=1:0). Second, we will
compare the time history of the global kinetic energy. Third, we will compare the ratio of
the rate of dissipation of kinetic energy by viscosity to the total rate of dissipation. This is
computed by summing the viscous dissipation on the grid, �uuxx and forming the ratio,∑

i �uiuxx; i∑
i
1
2 (u

2
i )t

(40)

The results for the high viscosity case are shown in Figures 2 and 4 (left panel). The
comparison of the �nal solutions in Figure 2 is excellent, with tiny di�erences appearing only
at the tops and bottoms of the shocks. We note that it is in these cells that �ux changes sign.
As noted previously, in these cells MPDATA becomes only �rst-order accurate, and so is
much more dissipative than DNS-ME. The comparison of the ratio of the energy dissipation
rates and the energy histories (Figure 4) show similar close agreement.
The results for the low viscosity case are shown in Figures 3 and 4 (right panel). The

solutions are sharper and steeper in this case. Nevertheless, the comparison of the �nal solu-
tions and the ratio of viscous to total energy dissipation (Figure 3), and the energy dissipation
history (Figure 4) all remain in excellent agreement. These results support the proposition
that the modi�ed equation closely describes the properties of the MPDATA algorithm.
Finally we describe two experiments with the DNS-ME model where we modify the coe�-

cients of the truncation terms. For the coe�cient � of the dispersive term �u �uxxx, we found little
sensitivity either to the sign of this term, or to doubling its magnitude. This is comforting,
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Figure 3. The �nal solution for the multimode random sine wave using MPDATA and the DNS-ME
for low viscosity �=0:00001. The right �gure compares the time histories of the ratio of the viscous

and the total energy dissipation rates from MPDATA and the DNS-ME for low viscosity.
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Figure 4. Comparing the kinetic energy histories for the high viscosity (left panel) and
low viscosity (right panel) cases. The modi�ed equation closely reproduces the MPDATA

dissipation but is very slightly less dissipative.

for these terms have no analog in the analytic equations. We also note that it is possible
to remove (i.e., compensate) these terms in MPDATA while maintaining its nonoscillatory
character [5].
The results of experiments with the coe�cient 	 of the nonlinear term �u3x are more inter-

esting. In principle, this term is closely related to the analytic result of Frisch—see Equation
(11) in Section 3. In fact, this term is su�cient to stabilize the simulations with the coe�-
cients of all other third-order terms set to zero. The value predicted by Frisch of 	=− 1

12 is
large enough. However, we also note that these simulations are oscillatory and admit entropy
violating rarefaction shocks.
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Figure 5. A comparison of the multimode solutions at t=1:0 with a larger viscosity,
�1 = 0:0005, for DNS and several LES alternatives.

6.2. Large Eddy simulations

Here we compare several approaches to LES modelling of our multimode problem of the
previous section. Our purpose is to show that the NFV approach can give accurate results with
reasonable computational e�ort, when compared with DNS simulations of Burgers’ equation
and with our DNS-ME simulations of the MPDATA modi�ed equations. We will not compare
the NFV approach to any of the many explicit turbulence models for LES; this represents an
important e�ort for the future, but lies outside the scope of the present work.
In particular, we will compare �ve approaches: (1) a DNS simulation (by which we mean

the resolution is su�cient that the physical viscosity is responsible for essentially all of the
energy dissipation; (2) an underresolved DNS, which uses the same DNS algorithm but with
much lower resolution; (3) MPDATA at the same lower resolution; (4) DNS-ME of the
MPDATA modi�ed equation at the same lower resolution; (5) a standard van Leer algorithm
at the same lower resolution. The purpose of including the van Leer algorithm, which is an
alternate NFV scheme based on geometric �ux limiting [18], is to reinforce our contention that
it is the NFV properties in general, rather than MDPATA in particular, which is responsible
for the implicit turbulence modelling. A uni�ed discussion of nonoscillatory schemes based
on �ux limiting can be found in Reference [19].
We use two versions of our multimode problem, both with the same initial conditions given

by Equation (39), but employing two di�erent values of the viscous coe�cients—�1 = 0:0005
and �2 = 0:0002. The DNS simulation of Burgers’ equation (7) using 800 cells is well-resolved
for both viscosities and represents ‘truth’ for purposes of comparison. We repeat these runs
using 100 cells in each of our four LES approaches.
For the higher viscosity �1, the �ve solutions are plotted together in Figure 5. Here the

underresolved DNS is generally closest to the DNS, although it is on the edge of numerical
stability in the early stages of the simulation when the shocks are forming. The MPDATA
and van Leer runs are nearly identical. Both reproduce the large scale features of the solution.
Both exhibit small discrepancies in the positions of a few of the shock peaks and minima,
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Figure 6. A comparison of the multimode solution’s kinetic energy decay with a larger viscosity,
�1 = 0:0005, for DNS and several LES alternatives.

likely associated with the unphysical dispersive terms that appear among the truncation error.
The DNS-ME run is the least accurate. Although DNS-ME and MPDATA exhibit close agree-
ment in experiments in the previous subsection (cf. Figures 2 and 3), the coarser resolution
employed here (100 cells versus 400 cells) degrades this agreement.
The kinetic energy dissipation history in Figure 6 (left panel) shows that in the underre-

solved DNS run about 90 per cent of the energy dissipation is viscid (i.e., is dissipated by the
physical viscosity). This is presumably the reason that this simulation does well—i.e., this run
is ‘nearly’ DNS. By contrast in the MPDATA, DNS-ME and van Leer runs, nearly half the
energy is dissipated by the inviscid terms (i.e., by the numerical method). The kinetic energy
history is shown in Figure 6 (right panel). Each of the LES runs does well in this comparison,
though all are more dissipative than the DNS in the early stages of shock formation.
The four solutions for the lower viscosity case �2 are shown in Figure 7. Although �2 is

only slightly smaller than �1, the underresolved DNS has become unstable. The MPDATA
and van Leer runs are again in excellent agreement with each other, and faithfully reproduce
the resolved scales of the DNS simulation. As in the previous case, the DNS-ME run is the
least accurate.
The kinetic energy dissipation history is shown in Figure 8 (left panel). Here even the

DNS run has some inviscid dissipation in its early stages. All the LES runs are dominated by
the inviscid dissipation (the underresolved DNS run was not stable). The right panel of this
�gure shows the kinetic energy history. Again all LES runs compare well with the DNS run.
To summarize, the two NFV simulations are very similar to each other and are the most

computationally e�cient. Both MPDATA and the van Leer simulations produce high quality
solutions on coarse grids, using a relatively small number of comparisons. For example, the
MPDATA simulation using 100 cells requires only 70 time steps while the DNS simulation
using 800 cells requires 1700 time steps. In terms of function evaluations, the MPDATA run
is about 400 times less expensive, illustrating the value of the LES approach.
Finally, we note a less quanti�able though nevertheless important feature of the NFV sim-

ulations, namely robustness. When the simulated �ow becomes too variable to represent on
the grid (for example in the process of shock formation), NFV algorithms add dissipation
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Figure 7. A comparison of the multimode solutions at t=1:0 with a larger viscosity,
�2 = 0:0002, for DNS and several LES alternatives.
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Figure 8. A comparison of the multimode solution’s kinetic energy decay with a larger viscosity,
�2 = 0:0002, for DNS and several LES alternatives.

selectively to maintain smooth and reasonable solutions. This point is illustrated in Figures 2
and 3 by the lack of oscillations at the velocity maxima and minima.

7. DISCUSSION

In this paper, we have attempted to provide a rationale for the success of nonoscillatory �nite
volume (NFV) schemes to represent turbulent �ow with signi�cant unresolved scales without
recourse to a subgrid scale model—a property we have termed implicit turbulence modelling.
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Our strategy has been to demonstrate that the truncation errors of these methods, as determined
by comparison with the point equations that govern the �uid �ow, have physical signi�cance,
and indeed are the corrections necessary to represent the evolution of a �nite volume of �uid.
Our principal results are in Section 4 and pertain to a one-dimensional �uid governed by

Burgers’ equation. When the �ow is smooth over some scales of length and time, we expanded
the velocity in a Taylor series and averaged the equations over those length and time scales.
This led to several new terms that scaled with the square of the space or of the time intervals.
For �ows that are not laminar, i.e., for which the �uid velocity is not smooth over particular
length and time scales, we made an additional assumption that averaged velocity at least is
smooth over these scales. With this assumption, we were able to show that same averaged
equations that govern the evolution of laminar �ows also govern turbulent �ows.
We believe this result is important both philosophically and practically. From the philo-

sophical point of view, it means that the modeller does not have to know a priori whether a
�ow is turbulent. From the practical point of view, the same numerical models can be applied
to laminar and to turbulent �ow. Further, in physical terms our assumption about smoothness
implies only that the �ow can in fact be modelled by discretized PDEs, an assumption that
is usually made implicitly in the application of a model.
In closing this paper, it is appropriate to note some limitations and to suggest directions

for continuing research. First of all, we have focused on one-dimensional Burgers’ equation,
but are ultimately interested in the multidimensional Navier–Stokes equations. Second, one
may expect that the analytic derivations will not hold near a wall when the boundary layer
is not resolved. Third, the issues raised in Section 5 concerning variability and the ability of
the algorithm to ‘backscatter’ small scale energy into the resolved �ow need to be addressed.
Despite the work that remains to be done, we believe that the implicit turbulence modelling

property of NFV schemes represents a useful research direction and an important simpli�cation
to the problem of numerically simulating turbulent �ows. It appears that the reluctance of the
community in general to accept implicit turbulence modelling is more due to the lack of
justi�cation of the approach rather than any failure of application. We o�er this paper in the
spirit of providing a �rst level of justi�cation.
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